Tuesday 9 August 2011

New Method Defibrillates Heart With Less Electricity, Pain

Cornell scientists, in collaboration with physicists and physician-scientists in Germany, France and Rochester, N.Y., have developed a new—and much less painful and potentially damaging—method to end life-threatening heart fibrillations.
Click here to find out more!
The new technique, which is reported in the July 14 issue of the journal Nature, cuts the energy required for defibrillation by 84 percent, compared with conventional methods.
In healthy hearts, electrical pulses propagate across the heart muscle in an orderly fashion to control the heart's contraction and relaxation cycle at regular intervals. However, when the electrical pulses propagate throughout the heart chaotically, it disables the regular heartbeat and prevents the body from getting fresh supplies of blood.
One of these rhythm disturbances, called atrial fibrillation, is the most common sustained cardiac arrhythmia worldwide, affecting about 1 percent of the population, mostly people older than 50 years.
Patients who suffer repeatedly from atrial fibrillation are typically treated with a large electrical pulse (defibrillation), which forces the heart back into its regular beating but is painful and can damage the surrounding tissue. The new method, LEAP (Low-Energy Anti-fibrillation Pacing), developed by a team co-led by Flavio Fenton from the Cornell College of Veterinary Medicine, uses a heart catheter to create a sequence of five weak electrical signals in the heart.

No comments:

Post a Comment